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Abstract
Road traffic flow produces an undesirable externality since it distorts the ambient environmental noise, especially in cities. 
Such nuisance noise poses a risk to the health of the inhabitants. Globally, the combined concert of the forces of urbanization 
and road transport motorization has intensified the noise pollution challenge, yet, locally adapted predictive tools remain 
limited. In Nairobi, the capital city of Kenya, Road Traffic Noise (RTN) remains a less understood environmental nuisance. 
To date, no predictive RTN models have been developed, while established models such as CoRTN and RLS-90 lack 
applicability to Nairobi’s traffic and environmental conditions. This study aimed to develop an accurate smart model 
leveraging artificial neural networks (ANNs) to forecast RTN levels using traffic information data. 

Traffic data, including audio recordings using a Samsung Galaxy A12 Model SM-A127F/DS Android Smartphone, 
equivalent noise levels (Leq) using a Lutron SL-4033SD Class 1 Sound Level Meter (SLM), vehicular volume using a 
manual tally form, and speed using a speed gun, was collected across 42 locations within Nairobi. Using this data, an 
Artificial Neural Network (ANN), Multi-Layer Perceptron (MLP) model, was developed with two hidden layers. 

Hyperparameter tuning via grid search was done to optimize model performance. The model achieved a Mean Absolute 
Error (MAE) of 0.97 dBA and an R2 value of 0.90, outperforming traditional statistical models like CoRTN with a MAE 
of 5.0 dBA and RLS-90 with a MAE of 11.0 dBA. These results highlight the model’s high accuracy in predicting Nairobi’s 
RTN. The model’s deployment on a web-based dashboard enables real-time noise monitoring and stakeholder engagement. 
This pioneering smart predictive model for Nairobi offers a scalable solution for urban noise management, with potential 
applications in traffic planning and policy implementation.
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Introduction 
Road traffic noise (RTN) is a pressing environmental and public health concern in urban areas, particularly in rapidly urbanizing cities 
worldwide. As a byproduct of vehicular traffic, RTN contributes to adverse health outcomes, including stress, sleep disturbances, 
and cardiovascular diseases, as documented by the World Health Organization [1]. 

Studies by Clark et al. (2020) and Stansfeld & Clark (2024) highlight noise’s auditory and non-auditory effects, such as anxiety and 
cognitive impairment, necessitating robust noise management. In Europe and North America, long-term monitoring has linked RTN 
to reduced well-being, with studies like Thacher et al. (2020), Dzhambov et al. (2021), and Roscoe et al. (2024) showing increased 
mortality, mental health issues, and cardiovascular risks.

In developing regions like Asia and Africa, dense traffic and heterogeneous vehicle compositions exacerbate RTN challenges. For 
instance, studies in Delhi, India, have reported noise levels consistently exceeding permissible limits across major traffic corridors 
[2]. In Africa, research in Lagos, Nigeria, documented chronic noise exposure surpassing WHO guidelines, posing significant health 
risks [3]. Similarly, Clark et al. (2022) applied spatial modeling to map environmental noise in Accra, Ghana, revealing exposure 
inequalities in urban settings [4]. Earlier work by Tétreault et al. (2013) further confirmed that traffic-related noise contributes to 
cardiovascular disease risk, highlighting the global relevance of RTN as a public health issue.
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While measurement-based studies provide critical insights, their high costs and logistical complexity make them impractical for 
large-scale urban applications, driving demand for predictive models tailored to local conditions. Traditional statistical models, 
such as CoRTN and RLS-90, rely on traffic volume, speed, and road conditions but often underperform in non-European contexts 
due to differing traffic patterns [5]. Recent advancements in machine learning, particularly Artificial Neural Networks (ANNs) and 
ensemble methods, have demonstrated superior performance in capturing complex, non-linear relationships in traffic noise data. For 
example, Nourani et al. (2020) developed an emotional ANN model for vehicular traffic noise in Tehran, achieving high accuracy 
by modeling non-linear traffic dynamics [6]. 

Similarly, Acosta et al. (2024) employed an ANN with grid search hyperparameter tuning to predict RTN in Bogotá, optimizing for 
urban-specific variables [7]. Sharma et al. (2022) applied ensemble methods, such as random forests, to predict road traffic noise, 
emphasizing their robustness in handling diverse traffic datasets [8]. Lee et al. (2023) leveraged deep learning with convolutional 
layers to forecast urban noise in real time, incorporating spatial-temporal features [9]. Kumar et al. (2021) used ANNs to model 
highway noise in India, while Debnath et al. (2022) integrated ANN with contouring techniques for spatial noise mapping [10,11]. 
Umar et al. (2023) combined ensemble machine learning with GIS to predict campus traffic noise, highlighting the role of spatial 
variables in enhancing model accuracy [12]. 

These studies collectively demonstrate that machine learning approaches, when adapted to local conditions, outperform traditional 
statistical models by leveraging advanced mathematical frameworks to model complex urban noise patterns.

In Eastern Africa, smart predictive models for RTN remain scarce, with most studies relying on outdated statistical methods. 
Nairobi, Kenya’s capital, presents unique challenges due to its diverse vehicle fleet, including bicycles, motorcycles, cars, buses, and 
trucks, operating within constrained road networks (Appendix 4). This heterogeneity, coupled with frequent congestion, results in 
irregular traffic flow and elevated noise levels. Existing models like CoRTN and RLS-90 are not calibrated for Nairobi’s conditions, 
highlighting a critical gap in localized RTN prediction frameworks. This study addresses this gap by developing the first ANN-based 
RTN prediction model tailored to Nairobi’s traffic and environmental context. Its novelty lies in using a Multi-Layer Perceptron 
(MLP) ANN, optimized for Nairobi’s heterogeneous traffic patterns via grid search hyperparameter tuning, and deploying it on a 
web-based dashboard for real-time monitoring. The study contributes: (1) a high-accuracy MLP model for RTN prediction, (2) a 
scalable framework for noise management in African cities, and (3) a public platform for stakeholder engagement and urban noise 
policy formulation. These advancements aim to support urban planning, mitigate health impacts, and enhance liveability in Nairobi 
and similar contexts.

The source code for the MLP ANN model, including data preprocessing, model training, hyperparameter tuning, and web-based 
dashboard deployment, is available on GitHub at https://github.com/ElishaAkech/SOUNDAI. This repository includes Python 
scripts for implementing the model using libraries such as PyTorch, along with real datasets and instructions for reproducing the 
results.

Methodology
Study Area
The study was conducted in Nairobi City, Kenya, a bustling metropolis with a diverse vehicle fleet. 

Figure 1: Map of Nairobi City, Kenya (Source: Author)
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42 sampling points were selected across the city, spanning diverse land use types connected by diverse 
road corridors that have different traffic volumes, all representing varied urban traffic conditions, see Figure 
2. 

 

Figure 2: 42 Sampling locations selected across Nairobi (Source: Author) 
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Data Collection
Data were collected for seven days, across 42 Nairobi locations from 6 AM to 6 PM. Noise levels (Leq) were measured using a 
Lutron SL-4033SD Class 1 calibrated Sound Level Meter (SLM). A handheld Samsung Galaxy A12 Model SM-A127F/DS, Android 
smartphone was also used to capture audio recordings of RTN. Vehicle count spanning bicycles, motorcycles, private cars, SUVs, 
Pick-ups, Public Service Vehicles (PSVs), buses, light, medium, and heavy-duty trucks, and others such as tractors were manually 
tallied on a form shown in Appendix 1. Traffic speed was also captured using a calibrated Binar Radar speed gun and documented 
manually on a form shown in Appendix 1. From the data, a total of 504 samples of data were obtained.

Data Preprocessing
Noise levels were calculated in MS Excel from the logged SLM data. Vehicle counts were converted to Passenger Car Units (PCU) 
using standard conversion factors shown in Appendix 3. Average speeds were also calculated from the speed gun data, and the flow 
type was categorized as congested (<20 km/h), periodic (20–35 km/h), or fluid (>35 km/h). The smartphone audio recordings were 
preprocessed using Python to extract the Leq. They were compared with the SLM measurements to ensure consistency.

Framework Overview
The modelling process followed a structured pipeline, as shown in Figure 3, from data sources to evaluation, with shared preprocessing 
and diverse modelling approaches. The framework as presented in Figure 3, includes: (a) Data Sources: Three Excel sheets with the 
Noise Leq, Speed, and Vehicle Counts in PCU, per location and at different hour bands, providing the raw data, 

Common Preprocessing
Shared steps across all models, including feature en- gineering (motorcycles, light/medium/heavy vehicles, speed, lanes, flow type), 
data processing and cleaning, and an 80/20 train/test split, (c) Model Section: Divided into three categories: 

Traditional Machine Learning Models, that is, Random Forest, XGBoost, SVR, Custom ANN that is the 3-layer network 
implemented in this study, and Research-Based ANNs, that is, models from literature (Cammarata, Bogotá, Tehran, UAE, Genaro, 
and Torija), and Evaluation: Common performance metrics (Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 
the coefficient of determination (R2)) for comparing all models. This pipeline emphasizes that while preprocessing is identical, 
providing a standardized feature set to all models, the modelling approaches differ, utilizing distinct architectures and algorithms to 
predict the Leq.
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Figure 3: Visual pipeline diagram illustrating the modelling framework (Source: Author) Figure 3: Visual pipeline diagram illustrating the modelling framework.

Smart Prediction Model
A Multi-Layer Perceptron (MLP) ANN was selected due to its superior handling of non-linear relationships, after comparing 
different algorithms such as Random Forest, XGBoost, SVR, and Linear Regression, see Figure 3 above. 

Steps of Modelling 
Input Vector Definition: The input to the neural network is formalized as a vector x, each component representing a key traffic or 
environmental feature contributing to RTN. x is defined as:



J. Electr. Electron. Eng. Res. Rev. 2025 5

x =[x1, x2, x3, x4, x5, x6, x7, x8]
T

The superscript T means transpose, that is, turning a row into a column for math purposes. x1 denotes the count of motor cycles, 
the high-frequency noise contributors; x2 is the count of light vehicles, that is, cars, which are the primary volume drivers; x3 
medium vehicles that is, vans, which produce moderate noise; x4 represents heavy vehicles, that is, trucks, which are low-frequency 
dominant; x5 is average vehicle speed in kilometers per hour, influencing Doppler effects and tire-road interactions; x6 represents the 
number of lanes, affecting noise propagation; x7 represents the passenger car units (PCU), which is a standardized measure of traffic 
volume, and x8 represents the flow type (categorical: 0 for congested, 1 for periodic, 2 for fluid), impacting noise variability. These 
features were selected based on correlation analysis and domain knowledge to capture the stochastic nature of urban RTN in Nairobi.

Forward Propagation: The network processes the input through a series of linear transformations and non-linear activations to 
model complex RTN patterns. The computations are: 

The first hidden layer: h1 = max (0,W1x + b1)                                                               Equation 1

Where W1 ∈ R25×8 represents the weight matrix. It is a table of numbers that adjusts how much each input affects the layer. R25×8 
means 25 rows by 8 columns of real numbers.

x is the input vector, and b1 ∈ R25 is the bias vector, which adds a constant to shift the output. max (0,) is the Rectified Linear Unit 
(ReLU) activation function, which introduces non-linearity (allows modeling curves, not just straight lines) to handle heteroscedastic 
noise data (varying error) and prevents vanishing gradients (a training problem where updates become too small)

The second hidden layer: h2 = max (0,W2 h1 +b2)                                                          Equation 2

Where W2 ∈ R50×25, b2 ∈ R50 represents the weight matrix and the bias vector that expand feature representations for deeper pattern 
recognition.

The output layer (the Nairobi’s Smart RTN Prediction Model): y = W3 h2 + b3            Equation 3

Where W3 ∈ R1×50, and b3 ∈ R, yielding the predicted equivalent noise level, y, in dBA. This architecture allows the model to learn 
hierarchical features, from raw traffic counts to aggregated noise predictions, optimizing for the non-stationary characteristics of 
RTN.

Data Splitting and Cross-Validation: The dataset of 504 samples was partitioned into a training set (80%, 404 samples) and a 
testing set (20%, 100 samples) using stratified sampling to maintain distribution balance across noise hotspots. This split ensures 
robust generalization while allocating sufficient data for learning. To mitigate overfitting and assess model stability, 5-fold cross-
validation was employed on the training set: the data is divided into 5 subsets, with each fold used once as validation while training 
on the remaining four. This process yields averaged performance metrics, providing a scientifically rigorous estimate of out-of-
sample errors in the context of variable Nairobi traffic conditions.

Hyperparameter Optimization and Evaluation: Hyperparameters, including learning rate (range: [0.0001, 0.01]), batch size 
(range: [16, 64]), and number of epochs (up to 500 with early stopping), were tuned using grid search, exhaustively evaluating 
combinations to minimize validation loss. Model performance was quantified using:

Mean Absolute Error (MAE):                                                                               Equation 4

Where N is the number of samples, for example, 100 in the test set, yi is the observed Leq at sample i, and      is the predicted Leq at 
sample i. MAE measures average deviation in dBA and is crucial for practical noise forecasting.

Root Mean Squared Error (RMSE): RMSE=                                                   Equation 5

Where N is the number of samples, yi is the observed Leq at sample i, and       is the predicted Leq at sample i. The RMSE emphasizes 
larger errors in high-noise scenarios.

The Coefficient of Determination (R2):                                                           Equation 6

Where y̅  is the mean of the observed Leqs, yi is the observed Leq at sample i, and     is the predicted Leq at sample i.

The coefficient of determination indicates an explained variance; a value closer to 1 is better, meaning that the model will account 
for most differences in the data. 
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where wt is the weight at step t (current), wt+1 is the updated weight, η is the learning rate (step size), 
𝑚𝑚�� is the bias-corrected first moment estimate (smoothed gradient, like momentum),𝑣𝑣��   is the bias-
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for numerical stability (prevents division by zero). Adam combines momentum and RMSprop (adapts 
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convergence on the non-convex loss landscape of ANN training for RTN data with inherent 
multicollinearity. 
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meaning that the model will account for most differences in the data.  

Pearson correlation coefficient: 𝑟𝑟 = ∑(�����)(������)

�∑(�����)� ∑(������)�
   Equation 7 

Where yi is the observed Leq at sample i, 𝑦𝑦��  is the predicted Leq at sample i, 𝑦𝑦� is the mean of the 
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Where N is the number of samples, yi is the observed Leq at sample i, and 𝑦𝑦��  Is the predicted Leq at 
sample i.  

The MSE is quadratic, penalizing larger deviations more severely, which is appropriate for regression 
tasks like RTN prediction, where minimizing variance in noise estimates is critical for public health 
applications. It aligns with the Gaussian assumption of noise residuals in environmental modeling. 

vi. Optimizer: The Adam (Adaptive Moment Estimation) optimizer was utilized for efficient gradient 
descent, updating the weights as: 
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where wt is the weight at step t (current), wt+1 is the updated weight, η is the learning rate (step size), 
𝑚𝑚�� is the bias-corrected first moment estimate (smoothed gradient, like momentum),𝑣𝑣��   is the bias-
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for numerical stability (prevents division by zero). Adam combines momentum and RMSprop (adapts 
rates per parameter) advantages, adapting per-parameter learning rates, which accelerates 
convergence on the non-convex loss landscape of ANN training for RTN data with inherent 
multicollinearity. 
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Figure 4: MLP Architecture for RTN Prediction. 

2.7 Detailed Explanation of Forward Propagation and Optimization  

2.7.1 Forward Propagation Components 

Forward propagation is the process by which the input data flows through the network layers to produce an 
output prediction. Imagine it as a factory assembly line where raw materials (inputs) are transformed step by 
step. 

The key variables are: 

 Weight Matrices (W): These are like adjustable knobs in the network. The weight matrices W1 ∈ R25×8 

(25 by 8 grid of numbers), W2 ∈ R50×25, and W3 ∈ R1×50 contain learnable parameters that connect 
neurons (processing units) between layers. For instance, W1 weights the 8 input features, for example, 
motorcycle counts as x1, and speed as x5, to the 25 neurons in the first hidden layer, scaling each 
feature’s contribution to capture its influence on noise. These weights are changed during training to 
make better predictions. A high weight on x1 might mean motorcycles are very important for noise in 
Nairobi. 

 Hidden Layer Outputs (h): These are intermediate results. The vectors h1 ∈ R25 (list of 25 numbers) and 
h2 ∈ R50 represent the activations (outputs) of the first and second hidden layers, respectively. 
Computed as in Equation 1, multiply weights by inputs, add bias, then set negatives to zero. Similarly, 
for h2 as in Equation 2, they apply the ReLU activation to introduce non-linearity, enabling the model to 
learn complex patterns, like how motorcycle counts and traffic flow together affect noise. 

 Bias Vectors (b): These are constants added to adjust the output. The bias terms b1 ∈ R25 (25 numbers), 
b2 ∈ R50, and b3 ∈ R (single number) shift the linear transformations in each layer, allowing the network 
to fit data better. For example, b3 adjusts the final prediction 𝑦𝑦� to account for baseline noise, even if all 
inputs are zero.  

 Observed Leq (yi): This is the real, measured noise level (Leq, in dBA) for the i-th data sample (where 
i goes from 1 to N, the total number of samples). It is collected from actual measurements taken and is 
the "correct answer" the model tries to match. 

 Predicted Leq (𝑦𝑦𝑦𝑦� ): This is the model’s guess for the noise level for the i-th sample, calculated as in 
Equation 3. It is compared to yi to see how wrong the model is, and is shown on the dashboard for 
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and β1 = 0.9 (a decay factor).

It adds momentum, like pushing a ball to keep it rolling in the same direction.
•	 Bias-Corrected Second Moment (     ): This smoothens the squared gradient for adaptive steps: 
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and β2 = 0.999. 

It makes steps smaller for noisy directions (high variance) and larger for consistent ones.
•	 Numerical Stability Term (ϵ): A tiny number (10−8) added to avoid dividing by zero if      is very small, thus keeping calculations 

safe. This setup helps the model learn efficiently from Nairobi’s traffic data, handling complexities like varying vehicle noise.

Statistical Descriptors for Input Data 
Table in Appendix 4 presents statistical descriptors for the input data with a significance value α = 5% for the Kolmogorov-Smirnov 
(K-S) test. Statistical descriptors summarize data. x̅  is the mean (average value), σ is the standard deviation (how it is spread out), 
Min and Max are the smallest and largest, Range is the Maximum minus the Minimum, IQR is the interquartile range (middle 50% 
spread), C.V. is the coefficient of variation (relative spread in %), Kurtosis measures tail heaviness (high means more extremes), Asy. 
Coe. is asymmetry (skewness, positive means tail to the right), Kol. Smi. is the K-S test p-value (low means not normal distribution), 
Proportion is % of vehicle types.

Evaluation
Performance was evaluated using MAE, RMSE, and R2, with Pearson correlation analysis between predicted and actual Leq, 
obtained from SLM data. The performance metrics were compared to those of traditional machine learning models and literature-
based models.

Model Deployment
The model is deployed on a web-based dashboard, accessible to the public. Users input parameters such as the location, time, speed, 
and vehicle count, and the dashboard outputs predicted Leq in real-time, visualized via interactive charts. The platform supports 
noise monitoring, public education, and integration with traffic management systems.

•	 Bias Vectors (b): These are constants added to adjust the output. The bias terms b1 ∈ R25 (25 numbers), b2 ∈ R50, and b3 ∈ R 
(single number) shift the linear transformations in each layer, allowing the network to fit data better. For example, b3 adjusts the 
final prediction ŷ to account for baseline noise, even if all inputs are zero. 

•	 Observed Leq (yi): This is the real, measured noise level (Leq, in dBA) for the i-th data sample (where i goes from 1 to N, the 
total number of samples). It is collected from actual measurements taken and is the "correct answer" the model tries to match.

•	 Predicted Leq (     ): This is the model’s guess for the noise level for the i-th sample, calculated as in Equation 3. It is compared 
to yi to see how wrong the model is, and is shown on the dashboard for users. 

Adam Optimizer Components 
The optimizer is like a teacher that corrects the model’s mistakes by adjusting weights. The Adam optimizer updates the weights and 
biases to make the loss (error) smaller, using Equation 8. Think of it as taking small steps downhill to find the lowest error. 

The Components are  
•	 wt and wt+1: A single weight (one number in W) at the current step t (like time step in training), and its new value after update. 

This happens for every weight and bias to improve the model.
•	 Learning Rate (η): This is how big each step is (tuned between 0.0001 and 0.01). Too big, and you might overshoot; too small, 

and learning is slow. It is like the stride length when walking downhill.
•	 Bias-Corrected First Moment (     ): This is a smoothed version of the gradient (direction of steepest descent, calculated as 

change in loss (∂L) per change in weight (∂W):
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The coefficient of determination indicates an explained variance; a value closer to 1 is better, 
meaning that the model will account for most differences in the data.  
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observed Leqs, and 𝑦𝑦�� is the mean of predicted Leqs. 

It assesses linear agreement between predicted and actual Leq, ensuring scientific validity. 

v. Loss Function: The Mean Squared Error (MSE) was selected as the objective function for 
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The MSE is quadratic, penalizing larger deviations more severely, which is appropriate for regression 
tasks like RTN prediction, where minimizing variance in noise estimates is critical for public health 
applications. It aligns with the Gaussian assumption of noise residuals in environmental modeling. 
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descent, updating the weights as: 
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where wt is the weight at step t (current), wt+1 is the updated weight, η is the learning rate (step size), 
𝑚𝑚�� is the bias-corrected first moment estimate (smoothed gradient, like momentum),𝑣𝑣��   is the bias-
corrected second moment estimate (smoothed squared gradient for adaptive rates), and 𝜖𝜖 =  10��, 
for numerical stability (prevents division by zero). Adam combines momentum and RMSprop (adapts 
rates per parameter) advantages, adapting per-parameter learning rates, which accelerates 
convergence on the non-convex loss landscape of ANN training for RTN data with inherent 
multicollinearity. 
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updates the weights and biases to make the loss (error) smaller, using Equation 8. Think of it as taking small 
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 wt and wt+1: A single weight (one number in W) at the current step t (like time step in training), and its 
new value after update. This happens for every weight and bias to improve the model. 

 Learning Rate (η): This is how big each step is (tuned between 0.0001 and 0.01). Too big, and you 
might overshoot; too small, and learning is slow. It is like the stride length when walking downhill. 

 Bias-Corrected First Moment (𝑚𝑚𝑚𝑚� ): This is a smoothed version of the gradient (direction of steepest 
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Where:  

𝑚𝑚�  =  𝛽𝛽�𝑚𝑚��� +  (1 −  𝛽𝛽�)𝑔𝑔�      Equation 12 

and β1 = 0.9 (a decay factor). 

It adds momentum, like pushing a ball to keep it rolling in the same direction. 

 Bias-Corrected Second Moment (𝑣𝑣�� ): This smoothens the squared gradient for adaptive steps:  
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and β2 = 0.999.  

It makes steps smaller for noisy directions (high variance) and larger for consistent ones. 

 Numerical Stability Term (ϵ): A tiny number (10−8) added to avoid dividing by zero if 𝑣𝑣��  is very small, 
thus keeping calculations safe. This setup helps the model learn efficiently from Nairobi’s traffic data, 
handling complexities like varying vehicle noise. 

2.8 Statistical Descriptors for Input Data  
Table in Appendix 4 presents statistical descriptors for the input data with a significance value α = 5% for the 
Kolmogorov-Smirnov (K-S) test. Statistical descriptors summarize data. 𝑥̅𝑥 is the mean (average value), σ is the 
standard deviation (how it is spread out), Min and Max are the smallest and largest, Range is the Maximum 
minus the Minimum, IQR is the interquartile range (middle 50% spread), C.V. is the coefficient of variation 
(relative spread in %), Kurtosis measures tail heaviness (high means more extremes), Asy. Coe. is asymmetry 
(skewness, positive means tail to the right), Kol. Smi. is the K-S test p-value (low means not normal distribution), 
Proportion is % of vehicle types. 

2 .8 . 1  Eva lua t i on  
Performance was evaluated using MAE, RMSE, and R2, with Pearson correlation analysis between predicted 
and actual Leq, obtained from SLM data. The performance metrics were compared to those of traditional 
machine learning models and literature-based models. 
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Results
The table in Appendix 5 shows the equivalent sound levels measured at different time intervals using the SLM for the 42 sampling 
locations 

Nairobi Road Traffic Noise Prediction Model
The Nairobi’s Smart RTN Prediction Model (MLP) Leqpredicted  = W3 h2 + b3			   Equation 15

Where h2 is defined as in Equation 2 and W3 ∈ R1×50, and b3 ∈ R represents the weight matrix and bias for the output layer (single 
prediction).

Model Evaluation and Validation
The MLP model achieved a MAE of 0.97 dBA, RMSE of 1.38 dBA, and R2 of 0.90 with a Pearson Correlation coefficient of 0.9476 
between the predicted and the measured Leq values, indicating strong predictive accuracy. Table 2 compares the MLP with other 
models, showing superior performance over CoRTN, which has a MAE of 5.0 dBA and an R² of 0.80, and RLS-90, which has a 
MAE of 11.0 dBA and an R² of 0.50, attributed to its ability to capture Nairobi’s unique traffic patterns. The UAE ANN and Torija 
ANN performed similarly well; however, the Current MLP is optimized for Nairobi’s context [13,14].

Model MAE (dBA) RMSE (dBA) R2

Current MLP 0.97 1.38 0.90
Bogotá MLP [14] [14] 1.19 1.56 0.87
ANN (Torija) [8] [8] 0.87 1.08 0.94
ANN (UAE) [11] [11] 0.79 0.97 0.95
XGBoost 1.14 1.39 0.89
SVR 2.67 3.59 0.30
Random Forest 1.09 1.43 0.89
Linear Regression 3.74 4.44 -0.07
CoRTN 5.00 – 0.80
RLS-90 11.00 – 0.50

Table 1: Model evaluation and validation with existing predictive models

Figure 5: Average Difference Between Measured and Predicted Leq.
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Figure 6: An example of a day SPL variation prediction for Location 1 

The plot in Figure 6 above shows the actual and predicted change in Leq over time, illustrating the differences 
between measured and model-predicted noise levels per hourly interval from 6 AM to 6 PM. The close 
alignment, especially during peak hours, demonstrates the model’s capability to capture temporal variations 
in RTN, with minor deviations reflecting real-world complexities like unmodeled variables. 
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Figure 7: Performance Comparison (All Models) bar chart showing MAE, RMSE, and R2 for each model

The plot in Figure 6 above shows the actual and predicted change in Leq over time, illustrating the differences between measured 
and model-predicted noise levels per hourly interval from 6 AM to 6 PM. The close alignment, especially during peak hours, 
demonstrates the model’s capability to capture temporal variations in RTN, with minor deviations reflecting real-world complexities 
like unmodeled variables.

Discussion
The MLP model developed in this study effectively captures Nairobi’s complex traffic dynamics, including the high prevalence of 
motorcycles and variable flow types, which contribute significantly to road traffic noise (RTN) variability. As shown in Table 1, 
the model outperforms traditional models like CoRTN and RLS-90, primarily due to its ability to adapt to Nairobi’s heterogeneous 
vehicle fleet and congested road networks, which these conventional models fail to address. This adaptability stems from the 
model’s use of a Multi-Layer Perceptron (MLP) ANN, optimized through grid search hyperparameter tuning to handle non-linear 
relationships in traffic data. The model’s predictive accuracy supports cost-effective noise monitoring, offering a scalable solution 
for urban planning in rapidly growing African cities like Nairobi. 

By deploying the model on a web-based dashboard, it enables real-time noise prediction, facilitates stakeholder engagement, and 
supports public education on noise pollution. The platform’s integration with traffic management systems can inform urban noise 
policies and mitigate health impacts, such as stress and subjective annoyance. However, the model’s reliance on data from this study 
limits its ability to account for seasonal traffic variations or unmodeled variables like road surface type and weather conditions, 
which future research should address to enhance robustness.
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Figure 8: Box Plot of Prediction Errors for All Models. 
Predictive modeling offers significant advantages, including cost-effective noise monitoring and scalability, 
which are particularly beneficial for urban planning in rapidly growing cities like Nairobi. The deployment of 
the model on a web-based dashboard facilitates real-time noise prediction, enables stakeholder 
engagement, allows for public education on noise pollution, and integrates with traffic management systems 
to mitigate noise at major hotspots. Practical implications include informing urban noise policies and reducing 
health impacts like stress and subjective annoyance. However, its limitations lie in the model’s reliance on 
this study’s data, which may not account for seasonal traffic variations, and the absence of variables like 
road surface type or weather conditions. 
 
5. CONCLUSION 

This study developed the first smart RTN prediction model for Nairobi, leveraging an MLP ANN with high 
accuracy and surpassing traditional models like CoRTN and RLS-90. The model, tailored to Nairobi’s traffic 
dynamics, is deployed on a public web dashboard, enabling real-time noise monitoring and prediction and 
citizen engagement. The study recommends including real-time data integration, expanding input variables 
such as road surface and weather, and collaboration with traffic authorities to enhance urban noise 
management. This pioneering model sets a baseline for smart noise prediction in African cities, with the 
potential for broader application. 
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Predictive modeling offers significant advantages, including cost-effective noise monitoring and scalability, which are particularly 
beneficial for urban planning in rapidly growing cities like Nairobi. The deployment of the model on a web-based dashboard 
facilitates real-time noise prediction, enables stakeholder engagement, allows for public education on noise pollution, and integrates 
with traffic management systems to mitigate noise at major hotspots. Practical implications include informing urban noise policies 
and reducing health impacts like stress and subjective annoyance. However, its limitations lie in the model’s reliance on this study’s 
data, which may not account for seasonal traffic variations, and the absence of variables like road surface type or weather conditions.

Conclusion
This study developed the first smart RTN prediction model for Nairobi, leveraging an MLP ANN with high accuracy and surpassing 
traditional models like CoRTN and RLS-90. The model, tailored to Nairobi’s traffic dynamics, is deployed public web dashboard, 
enabling real-time noise monitoring and prediction and citizen engagement. The study recommends including real-time data 
integration, expanding input variablesroad surface and weather, and collaboration with traffic authorities to enhance urban noise 
management. This pioneering model sets a baseline for smart noise prediction in African cities, with the potential for broader 
application [15-22].
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Manual Tally form used for recording speed 
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APPENDIX 3 

PCU conversion factors 
Bicycle Motorcycle Private 

car 
Pickup SUV PSVs Buses Light 

trucks 
Medium 
trucks 

Heavy 
trucks 

Others 

0.5 1 1 1 1 1.5 4 1.5 5 8 8 
  

Appendix 4
Table showing the Statistical descriptors for input data (significance value α = 5% for K-S).
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APPENDIX 4 

Table showing the Statistical descriptors for input data (significance value α = 5% for K-
S). 

Stat. 
Flow 

Motorcycles Light Medium Heavy q (PCU) Speed Lanes 

x̄ 11.65 58.24 12.83 5.71 1838.07 50.19 3.07 
0.87 
σ 

 
15.23 

 
38.76 

 
7.45 

 
6.12 

 
580.34 

 
14.82 

 
0.98 

0.34 
Min. 

 
0.00 

 
5.00 

 
0.00 

 
0.00 

 
409.00 

 
25.00 

 
2.00 

0.00 
Max. 

 
63.00 

 
210.00 

 
42.00 

 
21.00 

 
6965.00 

 
85.21 

 
4.00 

1.00 
Range 

 
63.00 

 
205.00 

 
42.00 

 
21.00 

 
6556.00 

 
60.21 

 
2.00 

1.00 
IQR 

 
20.00 

 
50.00 

 
15.00 

 
8.00 

 
1200.00 

 
20.00 

 
2.00 

1.00 
C.V. (%) 

 
130.69 

 
66.55 

 
58.06 

 
107.18 

 
31.57 

 
29.53 

 
31.92 

39.08 
Kurtosis 

 
5.12 

 
4.89 

 
3.45 

 
4.23 

 
3.12 

 
2.89 

 
1.45 

1.23 
Asy. Coe. 

 
2.34 

 
2.10 

 
1.87 

 
2.01 

 
1.65 

 
1.23 

 
0.67 

0.45 
Kol. Smi. 

 
p < 0.001 

 
p < 0.01 

 
p < 0.05 

 
p < 0.01 

 
p < 0.001 

 
p < 0.05 

 
p < 0.1 

p < 0.05        

Proportion 
100.00% 

24.37% 49.84% 14.84% 9.94% 100.00% 100.00% 100.00% 
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Table showing the measured/observed RTN levels in Nairobi, Kenya.
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APPENDIX 5 

Table showing the measured/observed RTN levels in Nairobi, Kenya. 

LOCATION 6 AM-
7 AM 

7 AM-
8 AM 

8 AM-
9 AM 

9 AM-10 
AM 

10 AM-
11 AM 

11 AM-
12 PM 

12 
PM-1 
PM 

1 PM-2 
PM 

2 PM-3 
PM 

3 PM-
4 PM 

4 PM-5 
PM 

5 PM-
6 PM 

1 73.52 72.12 71.32 71.92 73.02 74.32 74.92 74.22 72.02 71.32 71.12 71.02 
2 82.89 81.39 80.69 81.29 82.39 83.69 84.29 83.29 81.39 80.59 80.39 80.29 
3 75.99 74.39 73.79 74.39 75.49 76.79 77.39 76.29 75.09 74.39 73.59 73.39 
4 72.2 70.8 71 71.6 72.7 74 74.6 73.5 71.7 71 70.7 70.6 
5 75.35 74.45 74.85 75.45 75.95 77.85 78.45 77.35 75.55 74.85 74.65 74.55 
6 82.92 81.22 81.72 82.32 83.42 84.72 85.32 84.22 82.42 81.72 81.52 81.42 
7 79.46 76.96 78.26 78.86 79.96 81.26 81.86 80.76 78.96 78.26 78.06 77.96 
8 78.9 76.4 77.7 78.3 79.4 80.7 81.3 80.2 78.4 77.6 77.5 77.2 
9 74.22 72.62 73.02 73.62 74.72 76.02 76.62 75.52 73.72 72.92 72.82 72.72 
10 78.69 76.69 76.49 77.09 78.19 79.49 80.09 78.99 77.19 76.39 76.29 76.19 
11 77.71 75.91 75.51 76.11 77.21 78.51 79.11 78.01 76.21 75.41 75.31 75.21 
12 80.69 78.59 78.49 79.09 80.19 81.49 82.09 80.99 79.19 78.49 78.29 78.19 
13 81.07 78.97 78.87 79.47 80.57 81.87 82.47 81.37 79.57 78.87 78.67 78.57 
14 76.1 74 73.9 74.5 75.6 76.9 77.5 76.4 74.6 73.9 73.7 73.6 
15 75.25 73.15 73.05 73.65 74.75 76.05 76.65 75.55 73.75 73.05 72.85 72.55 
16 75.74 73.64 73.54 74.14 75.24 76.54 77.14 76.04 74.24 73.44 73.34 73.24 
17 70.89 69.89 68.19 67.79 70.19 76.39 77.79 76.69 72.89 71.09 70.69 70.39 
18 75.19 74.09 73.99 74.19 74.89 76.39 77.19 76.59 74.79 74.09 73.79 73.49 
19 72.58 71.08 70.38 70.98 73.38 74.98 76.08 74.78 72.18 71.38 70.88 70.68 

20 68.86 66.76 66.36 67.46 69.66 72.76 74.26 73.16 70.36 68.66 67.96 67.16 

21 68.71 67.71 66.51 67.11 69.61 73.91 75.81 74.71 70.91 69.21 68.11 67.71 

22 73.03 71.73 71.43 71.83 74.03 75.23 75.93 74.83 73.03 72.33 71.73 71.53 

23 80.86 78.96 78.66 79.26 81.66 84.56 85.46 84.36 82.56 80.86 80.26 80.06 

24 73 70.9 70.8 71.4 73.9 76.5 77.7 76.6 74.8 73 72.5 72.3 

25 74.44 72.34 72.24 72.84 75.34 77.74 79.14 78.11 76.24 74.84 74.54 74.34 

26 70.37 68.27 68.17 68.77 71.27 73.57 75.07 73.97 72.17 70.97 70.17 69.97 

27 72.7 71.1 70.5 71.1 73.6 76.1 77.4 76.3 74.5 73.9 71.9 71.7 

28 71.36 69.86 69.16 69.76 72.16 74.46 75.96 74.86 73.06 72.06 70.66 70.36 

29 76.94 74.84 74.74 75.34 77.74 79.64 81.54 80.44 78.94 77.64 76.54 76.24 

30 74.48 72.38 72.28 72.88 75.28 77.18 79.08 77.98 75.76 75.18 74.58 74.38 

31 75.48 73.38 73.28 73.88 76.28 78.18 80.08 78.98 76.3 75.68 75.18 74.88 

32 69.78 67.68 67.58 68.18 70.58 72.48 74.38 73.28 71.48 70.48 69.68 69.38 

33 80.7 78.6 78.5 79.1 81.5 83.9 85.3 84.2 82.4 81.37 80.5 80.3 

34 74 73.2 72.5 73.1 74.5 77.4 78.3 77.2 75.4 73.55 73.2 73 

35 83.33 81.93 81.13 82.23 84.13 86.03 87.93 86.83 84.03 82.33 82.03 81.83 

36 76.54 74.44 74.34 74.94 77.44 79.24 81.24 80.14 77.34 75.64 75.44 75.24 

37 77.18 75.08 74.98 75.58 78.08 79.88 81.88 80.78 77.08 76.58 75.88 75.68 

38 81.64 79.54 79.44 80.04 82.54 85.04 86.34 85.24 83.44 82.34 81.54 81.24 

39 83.3 82 81.1 81.7 84.2 86 88 86.9 85.1 84 83.6 83.3 

40 77.61 76.21 75.41 76.01 78.41 80.31 82.21 81.11 79.31 77.61 77.11 76.99 

41 78.41 76.31 76.21 76.81 79.21 81.61 83.01 81.91 79.11 77.91 77.31 77.01 

42 77.07 74.97 74.87 75.47 77.87 79.77 81.67 80.57 78.77 76.07 75.67 77.77 
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