

Research Article

The Impact of AI-Supported Assisted Learning Platform on the Academic Performance of Disadvantaged Students: Exemplar with Suggested Novel Approach to Human–Machine Cooperation

Hang Lei^{1*}, Yu Yinuo², Zhu Fangmin³, Yao Jialiang⁴, Li Haitao⁵, Yu Song⁶ and Ng Khar Thoe⁷

^{1,2,3,4,5,6}*Education Management INTI International University Malaysia*

Corresponding Author:

Hang Lei. Education Management INTI International University Malaysia.

Received Date: 16.11.2025

Accepted Date: 01.12.2025

Published Date: 05.12.2025

Abstract

Against the backdrop of China's Education Modernization 2035 agenda, this chapter develops and empirically tests a collaborative framework in which human expertise and artificial intelligence jointly inform administrative decision-making across K–12 and higher-education contexts. Drawing on the Technology Acceptance Model and classical symbiosis theory, the study adopts a two-phase mixed-methods design that privileges qualitative insight. Phase one comprised semi-structured interviews with thirty administrators (fifteen from primary and secondary schools and fifteen from universities) to surface perceptions of AI-augmented workflows, anticipated benefits and obstacles, and contextual enablers and constraints. Thematic analysis of NVivo-coded transcripts identified three core dimensions shaping effective human–AI cooperation: technological infrastructure readiness, cultural receptivity among practitioners and the rigour of data-privacy safeguards.

Building on these findings, phase two surveyed four hundred educational leaders using measures of infrastructure maturity, stakeholder trust, perceived usefulness, perceived ease of use and data-security confidence. Analyses in SPSS 28—including exploratory factor analysis, multiple regression and structural path modelling—examined how these dimensions affect decision latency, predictive accuracy and transparency. Results show that AI applications (notably student-assessment analytics, personalised learning recommendations, workflow streamlining and strategic-planning systems) materially improve decision quality when paired with adequate infrastructure and governance. Moderation tests indicate institutions with robust infrastructure and stringent data-governance realise the largest gains, while cultural acceptance mediates the translation of technical capacity into routine practice. K–12 respondents emphasised intuitive interfaces and targeted professional development; university respondents prioritised cross-departmental data interoperability and advanced analytics.

We recommend accelerating the development of interoperable campus-wide and inter-institutional information ecosystems; delivering tiered, role-specific training and change-management initiatives to build trust and uptake; and strengthening educational data-governance and privacy protocols to ensure transparent, sustainable and equitable AI deployment. The chapter offers a theoretically grounded, practically applicable model for balancing AI-driven analytics with human-centred judgement, providing policymakers and educational leaders with a roadmap for responsible, high-impact AI integration in educational administration.

Key Words: Educational Administration, AI-Assisted Decision-Making, Human–AI Symbiosis, Technology Acceptance Model, Decision-Making Efficiency

Introduction

Education systems worldwide confront a dual imperative: raising attainment while closing persistent equity gaps. AI-enabled educational technologies — notably intelligent tutoring systems (ITS) and adaptive learning platforms — promise scalable personalisation and richer formative feedback than traditional classroom practice alone [1-3]. For learners disadvantaged by socio-economic, linguistic or resource constraints, technologies that approximate the benefits of one-to-one tutoring are particularly attractive, since they can partially compensate for scarce human resources when deployed with careful instructional design and contextual adaptation [4-6].

Yet technology is not a panacea. Empirical gains hinge on system design and pedagogical alignment, teacher capacity and professional support, and the broader policy and infrastructural environment in which tools are embedded [7,8]. Practical barriers — multilingual item banks, intermittent connectivity, limited device access outside school hours and uneven data-governance arrangements — can constrain effectiveness and, if unaddressed, risk amplifying existing inequities.

This chapter examines those enabling conditions and proposes a model of human–machine cooperation built around three design and practice principles.

Transparency: AI outputs should be interpretable and accompanied by confidence indicators so that practitioners understand model limits. **Controllability:** human oversight and straightforward override mechanisms must be integral, ensuring educators retain final authority over consequential decisions.

Adaptivity: systems should respond to learner trajectories and contextual constraints rather than apply one-size-fits-all rules. By centring these principles, the model seeks to marry the analytic strengths of AI with teacher agency and ethical safeguards, clarifying when and how AI-supported platforms can yield equitable, sustainable improvements for disadvantaged students.

Literature Summary

A growing evidence base examines the pedagogical and organisational impacts of AI-enabled educational technologies, with particular attention to intelligent tutoring systems (ITS) and adaptive learning platforms. Meta-analyses indicate that well-designed ITS can produce modest to moderate learning gains, especially in procedural domains such as mathematics and physics, where frequent formative feedback, personalised scaffolding and sequenced practice align closely with learner readiness [1,3]. Yet effect sizes vary considerably according to design fidelity, curricular alignment and the quality of instructional integration. Where these elements are weak, reported benefits shrink or disappear. [2,7].

Adoption and sustained use are shaped as much by human and organisational factors as by technical performance. Technology-acceptance models consistently identify perceived usefulness and perceived ease of use as primary predictors of uptake; social influence, facilitating conditions and trust in system outputs further moderate behavioural intention and actual use [9,10]. In schooling contexts, teacher beliefs, data literacy and access to role-specific professional development repeatedly emerge as decisive enablers or barriers to meaningful implementation [11,12].

Research on human–AI collaboration emphasises design principles that promote effective cooperation between practitioners and algorithmic systems: interpretability and transparency of model outputs, clear role delineation between human and machine, and mechanisms for human override and contextualisation of recommendations [13,14]. These studies argue that AI should augment—not replace—professional judgement, providing interpretable diagnostics that support teacher decision making while preserving educator agency.

Equity-focused critiques caution that AI systems may reproduce or amplify structural biases unless they are intentionally audited and adapted. Problems include unrepresentative training data, biased assessment items and inequitable access stemming from device and connectivity gaps [4,6,15]. Consequently, the literature advocates routine fairness audits, multilingual item banks and design strategies that explicitly account for socio-economic and linguistic diversity.

Finally, implementation research highlights the centrality of infrastructural and governance arrangements. Reliable connectivity, interoperable data architectures and robust privacy and consent frameworks are prerequisites for scalable, ethical deployment; absent these, the distributional benefits of AI are likely to be uneven, placing disadvantaged learners at greater risk of marginalisation [8,16]. Taken together, this corpus suggests that technological potential is necessary but not sufficient: realising equitable learning gains requires concurrent investments in instructional design, teacher capacity building, infrastructure and governance. These insights justify the chapter’s two-phase mixed-methods approach and motivate the three-dimension human–machine cooperation model developed in the next section.

Theoretical Framework: A Human–Machine Cooperation Model
The study is theoretically anchored in two complementary traditions. First, the Technology Acceptance Model (TAM) explains individual and organisational uptake of information technologies by foregrounding constructs such as perceived usefulness and perceived ease of use, which predict behavioural intention and adoption [9]. Second, classical symbiosis theory supplies a normative and conceptual vocabulary for designing durable, reciprocal interactions between distinct agents or systems, emphasising co-dependence that generates mutual benefit [13]. Combining these perspectives yields a framework that is both empirically tractable and normatively oriented: TAM identifies measurable antecedents of uptake, while symbiosis theory guides the design of long-term, equitable human–AI relationships.

From this synthesis we propose a three-dimension human–machine cooperation model comprising transparency, controllability and adaptivity.

Transparency denotes the extent to which algorithmic outputs are interpretable and accompanied by concise rationales and confidence indicators that practitioners can readily understand. By reducing epistemic uncertainty and supporting diagnostic reasoning, transparency fosters trust—an antecedent of sustained use emphasised in TAM literature. Clear, actionable explanations therefore function as a proximal mechanism linking model outputs to educator acceptance and informed decision making [10,14].

Controllability refers to mechanisms that preserve human agency: simple override functions, easy access to underlying evidence, and role-specific workflows that allow educators to accept, modify or reject algorithmic recommendations. Controllability mitigates automation bias, protects professional judgement and operationalises ethical governance by ensuring that consequential decisions remain subject to human sign-off [13,15].

Adaptivity captures a system's capacity to respond dynamically to learner trajectories and contextual signals, including language proficiency, resource constraints and local curricular priorities. Systems that tune item difficulty, feedback timing and pedagogical sequencing are more likely to align with instructional goals and produce measurable learning gains—provided teachers can interpret and operationalise those adaptations [1,3].

These three dimensions act as design levers that operate through specific proximal mechanisms (improved diagnostic precision, targeted remediation, efficient triage and enhanced formative feedback cycles) to generate distal outcomes such as higher mastery, increased course completion and narrower attainment gaps. Crucially, the framework specifies conditional pathways: technical readiness and the quality of data-governance arrangements moderate the efficacy of transparency

and adaptivity, while cultural receptivity and role-specific professional development mediate whether controllability is translated into routine practice. In other words, the presence of a given design feature (for example, explainable outputs) is necessary but not sufficient; its impact depends on infrastructural, governance and human-capital conditions.

By situating human–AI cooperation within TAM and symbiosis theory, the model yields testable hypotheses about antecedents and outcomes of adoption and provides actionable design criteria for vendors and institutions. It foregrounds the ethical imperative that AI augment—rather than substitute—educator judgement, and it identifies measurable constructs suitable for formative evaluation and large-scale impact assessment.

Methodology (Concise Overview)

This study used a convergent mixed-methods design that privileges qualitative insight while enabling quantitative generalisation and hypothesis testing. The research proceeded in two integrated phases—qualitative exploration to generate concepts and survey language, and quantitative measurement to test relationships and estimate mediation/moderation effects. Below are structured tables that summarise phases, instruments, analysis pipeline, and quality/process measures.

Phase	Purpose	Sample	Methods	Key products
Phase 1: Qualitative exploration	Generate themes, contextual variables, and item wording	30 educational administrators (K–12: 15; Higher Education: 15)	Semi-structured interviews; transcription; NVivo coding; deductive + inductive thematic analysis	Theme list; coding framework; corpus and phrasing for survey item development
Phase 2: Quantitative measurement & modelling	Test construct relationships; examine mediation/moderation	400 educational leaders (stratified / purposive sampling to capture sector/size/resource diversity)	Self-report questionnaire (piloted & revised); EFA; regression; structural equation modelling (SPSS 28)	Factor structures for scales; regression and path model results; sensitivity analyses

Table 1: Study phases summary

Instrument	Constructs measured	Example items / metrics	Notes (source / pilot)	Key products
Semi-structured interview guide	Transparency, controllability, adaptivity; organizational enablers/ barriers	Open prompts (e.g., “How does your institution interpret and act on AI-generated recommendations?”)	Used to generate survey item phrasing and contextual variables	Theme list; coding framework; corpus and phrasing for survey item development
Questionnaire (self-report, Likert scale)	Infrastructure maturity; stakeholder trust; TAM: perceived usefulness (PU), perceived ease of use (PEoU); data-security confidence; outcome variables (decision latency, predictive accuracy, perceived transparency)	5–7 point Likert items; some items adapted from validated scales (TAM items)	Existing scales adapted and piloted (N≈30); final items retained based on clarity and internal consistency	Factor structures for scales; regression and path model results; sensitivity analyses
System/process logs (where available)	Usage frequency; module completion rates; session duration; intervention counts	Log exports (session IDs, timestamped durations, completed modules)	Used to triangulate self-report and to create proximal fidelity indicators	

Table 2: Data collection instruments & key measures

Step	Purpose	Tool(s) / Outputs
Data cleaning & descriptive statistics	Characterise sample; handle missing data and outliers	SPSS 28; descriptive tables; missing-data report
Exploratory Factor Analysis (EFA)	Assess scale dimensionality; drop or combine items	SPSS 28; factor loadings matrix; explained variance; Cronbach's α
Multiple regression	Estimate direct effects controlling for covariates	SPSS 28; regression coefficients, p-values, R^2
Structural Equation Modelling (SEM)	Test mediation & moderation in full theoretical model	AMOS or equivalent SEM package; path diagrams; fit indices (CFI, RMSEA, etc.)
Robustness & sensitivity checks	Test model stability; assess common-method bias	Alternative specifications; Harman single-factor test; sub-sample comparisons

Table 3: Analysis pipeline

Domain	Specific measures	Documentation / evidence
Ethics & data governance	IRB approval; informed consent (parental consent where appropriate); data minimisation; encryption; role-based access	IRB approval letters; consent form templates; data processing agreements
Qualitative trustworthiness	Independent coding by multiple researchers; reconciliation meetings; analytic memos	Codebook; inter-coder comparison logs; analytic memos
Scale reliability	Pilot testing; Cronbach's α ; EFA results	Pilot report; reliability tables; factor loadings
Triangulation	Compare backend logs with self-report; fidelity checklists	Log exports; comparative analysis tables; fidelity checklists
Common-method bias checks	Harman single-factor test or temporal/measurement separation	Test results and sensitivity analyses

Table 4: Process indicators & quality assurance

Key Findings

This study produced convergent qualitative and quantitative evidence on how AI-supported assisted-learning platforms influence administrative decision-making and learner outcomes, and on the contextual conditions that enable or limit those benefits. (Note: numerical estimates in the draft are illustrative placeholders and must be replaced with empirical results prior to submission.)

Improved Decision Quality and Learner Outcomes

Access to AI-supported platforms was associated with measurable improvements in administrative decision quality and positive signals on curriculum-aligned assessments. Effects were strongest on proximal indicators: timelier identification of at-risk learners, more targeted remedial assignments, and faster triage of instructional needs. These patterns suggest that algorithmic diagnostics can sharpen administrative prioritisation when outputs are interpreted and acted upon by practitioners.

Larger Compensatory Effects for Lowest-Attaining Students

Conditional on implementation fidelity, the largest relative gains were observed among the lowest-attaining learners. Qualitative accounts indicated that adaptive sequencing and scaffolded feedback encouraged engagement with tasks previously perceived as too difficult, producing larger marginal benefits where baseline instruction was weakest.

Engagement Mediates Platform Effects

Engagement metrics (time on task, module completion rates) were positively correlated with assessment gains and explained

a substantial share of the platform effect in mediation analyses. Interview data corroborated this mechanism: visible progress indicators and short, actionable learning tasks sustained student motivation and helped teachers plan targeted interventions.

Practitioner Priorities Differ by Sector

K-12 practitioners emphasised intuitive interfaces, concise rationales, and role-specific professional development so classroom teachers could interpret and operationalise system outputs. University respondents prioritised cross-departmental data interoperability, advanced analytics for strategic planning, and the ability to integrate disparate administrative systems. These sectoral differences imply that vendor design and institutional deployment strategies must be sensitive to role-specific workflows and institutional scale.

Infrastructure and Governance Moderate Impact

Moderation analyses showed that institutions with robust technological infrastructure and well-specified data-governance frameworks experienced the largest improvements in decision quality and implementation fidelity. Where connectivity was intermittent, devices were scarce, or vendor agreements were opaque, potential gains were attenuated and equity risks were amplified.

Cultural Acceptance Mediates Technical Capacity and Routine Use

Cultural receptivity—operationalised via trust in AI outputs, openness to data-informed practice, and prior exposure to analytics—mediated the translation of technical capacity

into everyday use. Institutions with technical readiness but low practitioner trust did not realise commensurate benefits, underscoring the importance of change management and trust-building interventions.

Persistent Barriers and Equity Risks

Common barriers included the absence of multilingual item banks, device and home-access inequalities, intermittent connectivity, and limited out-of-school access for disadvantaged learners. Equity risks increased where models were trained on non-representative samples or where privacy safeguards were

weak. Practitioners repeatedly recommended fairness audits, inclusive item development, and formal oversight mechanisms.

Implementation Affordances and Actionable Features

Practitioners valued features that combined interpretability with actionability: short rationales for recommendations, confidence bands or probability scores, simple override actions, and dashboard filters to support rapid triage. These affordances were seen as critical for sustaining teacher agency and preventing automation bias.

Domain	Core finding	Evidence type	Practical implication
Decision quality	Faster triage; improved diagnostics	Quantitative + qualitative	Prioritise dashboards & real-time alerts
Equity	Largest gains for lowest-attaining with high fidelity	Quantitative subgroup analysis; interviews	Target fidelity support to under-resourced schools
Engagement	Engagement mediates learning gains	Mediation analysis; usage logs	Design for short tasks & visible progress cues
Sector needs	K–12: usability & PD; HE: interoperability & analytics	Interview themes	Tailor vendor solutions by sector & role
Infrastructure	Robust infra & governance → stronger effects	Moderation analysis	Invest in connectivity & clear data agreements
Culture	Trust mediates uptake	Survey & interviews	Implement trust-building & change management
Risks	Multilingual gaps, access inequality, privacy weaknesses	Interviews & audit checks	Mandate fairness audits & inclusive item banks
Affordances	Interpretability + actionability sustain use	Interviews; usage correlations	Provide rationale, confidence metrics, override tools

Table 5: Summary of key findings (concise)

Design principle	How findings support it	Recommended institutional / vendor actions
Transparency	Practitioners need short rationales and confidence indicators to interpret outputs	Supply concise, exportable explanations and confidence bands for recommendations
Controllability	Override actions and audit trails preserve teacher agency and reduce automation bias	Implement simple override UI, role-based controls, and immutable audit logs
Adaptivity	Adaptive sequencing delivered largest marginal gains for weakest learners	Provide configurable adaptivity, subgroup monitoring, and multilingual item banks
Infrastructure & Governance	Technical readiness and clear data policies amplified benefits	Invest in connectivity, device access, and legally vetted vendor data agreements
Professional development	Low trust blocked benefits despite technical readiness	Offer role-specific PD, coaching on interpreting analytics, and change-management programs

Table 6: Mapping findings to design principles and recommended actions

Concluding Synthesis

Taken together, the findings validate the human–machine cooperation model’s emphasis on transparency, controllability, and adaptivity as core design principles. They point to a layered implementation pathway: technical investments (infrastructure and interoperability) must be paired with governance reforms and sustained professional development to produce equitable and durable improvements.

• (Reminder: replace illustrative placeholders with final empirical estimates and report subgroup/sample sizes, confidence intervals, and effect sizes in the Results tables before submission.)

- Would you like these tables and the polished English text inserted into your Canvas document and the draft updated in place? I can do that now and also produce a downloadable Word/PDF version if you prefer.

Mechanisms and Interpretation

The convergent findings can be organised around three interrelated mechanisms through which AI-supported assisted-learning platforms influence administrative decision-making and student outcomes. Each mechanism operates within enabling or constraining conditions set by infrastructure, governance, cultural receptivity and professional capacity.

Personalised Practice Aligned to Learner Readiness

Adaptive sequencing and diagnostic analytics allow platforms to surface tasks at an appropriate difficulty level for each learner, reducing cognitive overload while preserving productive challenge. For disadvantaged students—who frequently present heterogeneous skill profiles—this tailoring supports incremental mastery and lowers disengagement. The mechanism depends critically on (a) diagnostic validity, and (b) teachers' capacity to interpret and translate algorithmic recommendations into classroom plans and pedagogical actions. Weak diagnostics or limited teacher uptake will attenuate impact.

Teacher Triage Informed by Fine-Grained Diagnostics

Near-real-time, granular performance data enable educators and administrators to locate at-risk learners quickly and to identify specific misconceptions or skill deficits. That capability supports targeted interventions and more efficient allocation of scarce human resources, preventing small gaps from widening into persistent attainment deficits. The triage mechanism requires user-friendly dashboards, interpretable metrics and timely data flows; without those affordances the platform's diagnostic

potential risks remaining under-utilised.

Motivational Scaffolding Via Visible Progress Cues

Design features such as progress bars, mastery badges and short, well-scoped tasks can sustain student motivation—especially when combined with meaningful teacher feedback. These affordances increase time-on-task and module completion, which in turn mediate achievement gains. The motivational effect depends on perceived credibility: if feedback is not trusted or rewards are seen as unattainable, engagement gains will be short-lived.

Reinforcing Interactions Between Mechanisms

Although analytically distinct, the three mechanisms are mutually reinforcing. For example, stronger motivation increases persistence with adaptive practice, producing richer interaction data that improves diagnostic precision and thereby strengthens teacher triage. In practice, well-designed platforms and workflows activate positive feedback loops that magnify modest proximal effects into larger downstream gains.

Mechanism	How it works	Key preconditions	Proximal outcomes	Risk if preconditions absent
Personalised practice	Adaptive sequencing + diagnostics match task difficulty to readiness	Accurate diagnostics; configurable adaptivity; teacher interpretation	Increased mastery, reduced disengagement	Mis-targeting; wasted practice time
Teacher triage	Fine-grained, near-real-time data pinpoints needs	Timely data pipelines; interpretable dashboards; role-specific PD	Faster identification, targeted remediation	Under-utilisation of diagnostics
Motivational scaffolding	Visible progress cues + short tasks sustain engagement	Credible feedback; attainable micro-rewards; teacher reinforcement	Higher time-on-task; higher completion rates	Short-lived engagement; demotivation

Table 6.1: Mechanisms summary

Conditional Pathways and Moderating Influences

All three mechanisms are embedded in conditional pathways: their effectiveness is moderated by contextual factors. Robust infrastructure and interoperability are prerequisites for reliable real-time diagnostics and seamless adaptation. Data-governance quality determines dataset completeness and trustworthiness,

affecting both the validity of recommendations and practitioners' willingness to act. Cultural receptivity—shaped by transparent design, role-specific professional development and prior exposure to analytics—mediates whether controllability features and diagnostic outputs become part of everyday workflows.

Moderator	Effect on mechanisms	Practical mitigation
Infrastructure & connectivity	Enables or blocks real-time diagnostics and adaptivity	Invest in connectivity, caching strategies, offline modes
Data-governance quality	Affects data completeness, bias, and practitioner trust	Clear policies, provenance logs, fairness audits
Teacher data-literacy & PD	Determines whether diagnostics inform instruction	Role-specific PD, coaching, just-in-time supports
Cultural receptivity / trust	Mediates uptake even when tech is available	Transparency features, participatory rollout, pilot evidence
Vendor contract clarity	Impacts data access, auditability and long-term sustainability	Legally vetted agreements with audit/exit clauses

Table 6.2: Key moderators and practical mitigations

Implications for the Human–Machine Cooperation Model

These mechanisms show how the model's three design principles—transparency, controllability, adaptivity—translate into routine practice. Transparency supports trust in diagnostics

and adaptations; controllability preserves professional judgement and reduces automation bias; adaptivity delivers tailored learning trajectories that sustain engagement and mastery. When these principles are embedded in platform design and supported

by conducive infrastructural, governance and human-capital conditions, AI-assisted systems can contribute to closing equity gaps while improving overall decision quality.

Ethical, Fairness and Governance Considerations

Scaling AI-supported assisted-learning platforms in educational administration requires not only technical capacity but robust governance that safeguards ethical integrity, equity and public trust. Absent deliberate attention to these issues, well-intentioned innovations risk reproducing or amplifying existing inequalities. Below we summarise core domains of concern, practical mitigations, and an operational checklist for governance and procurement.

Algorithmic Fairness and Bias Mitigation

AI models trained on incomplete, unrepresentative, or biased data may generate recommendations that systematically disadvantage particular groups (e.g. learners from minority linguistic, socio-economic, or cultural backgrounds). Mitigation requires routine fairness audits that evaluate model performance across demographic subgroups, processes for iterative model refinement, and inclusive item-bank development. In multilingual settings, content should be adapted and psychometrically validated to ensure equitable accessibility and interpretability.

Transparency and Accountability

Opaque “black-box” algorithms undermine practitioner trust and limit meaningful oversight. Governance frameworks should require interpretable rationales (concise explanations), confidence intervals or probability estimates, and the contextual data needed to evaluate outputs. Institutions must define clear lines of accountability for AI-informed decisions, including documented escalation and contestation procedures and responsibilities for corrective action.

Data Privacy and Security

Educational data often include sensitive personal information linked to performance histories and socio-demographic profiles. Compliance with applicable privacy regimes (e.g. GDPR

where relevant) should be a baseline. Best practice includes data minimisation, encryption in transit and at rest, role-based access controls, explicit retention and deletion schedules, and vendor contracts that specify data ownership, permitted uses, independent audit rights and breach notification procedures.

Human Oversight and Professional Agency

Ethical deployment preserves the primacy of human judgement in high-stakes decisions, aligning with the model’s controllability dimension. Educators must be empowered to accept, modify or reject AI recommendations via straightforward override mechanisms, with clear documentation of decisions. Professional development should address both tool capabilities and limitations, cultivating informed scepticism alongside confident use.

Equitable Access and Infrastructure Parity

Unequal access to reliable connectivity, devices and technical support can create or deepen digital divides. Governance strategies should include resource-allocation mechanisms prioritising disadvantaged schools and learners (targeted funding, infrastructure investment, policy incentives) so benefits are not confined to well-resourced institutions.

Sustainability and Environmental Considerations

The computational demands of large-scale AI systems have environmental impacts. Institutions and vendors should favour architectures and procurement choices that balance analytical capacity with computational efficiency and energy responsibility.

Summary Statement

Ethical and fairness considerations are foundational to legitimate and sustainable AI use in education. Embedding routine fairness audits, transparent design, rigorous privacy safeguards, strong human oversight, and equitable infrastructure provisioning into governance frameworks creates the conditions under which AI-enabled decision-making can genuinely advance both educational quality and social justice.

Domain	Recommended actions	Responsible actors
Fairness & bias	Routine subgroup performance audits; inclusive item-bank development; ongoing model retraining with representative samples	Vendor + Institution + External auditors
Transparency	Provide concise explanations, confidence scores, provenance metadata	Vendor (UI/API) + Institution (policy)
Accountability	Define escalation/contest procedures; document decision chains; assign roles for remedial action	Institution leadership + Legal/Compliance
Privacy & security	Data minimisation; encryption; role-based access; retention/deletion policies; breach notifications	IT + Vendor + Legal
Human oversight	Easy override mechanisms; audit trails; PD for interpreting outputs	Vendor (UX) + Institution (PD teams)
Access & equity	Targeted device/connectivity funding; offline/low-bandwidth modes; multilingual materials	Ministries / Districts / Institutions
Sustainability	Prefer energy-efficient models; measure/monitor compute footprint	Vendor + Procurement + Sustainability teams

Table 7: Ethical & governance actions (summary)

Item	Minimum requirement / good practice
Fairness audit	Pre-deployment subgroup evaluation; scheduled post-deployment audits
Explainability	Exportable rationale for every high-impact recommendation (1–2 sentence summary + confidence score)
Data contract	Clear clauses on ownership, permitted uses, retention, audit rights, and exit/ portability
Override & logging	One-click override with immutable audit log and justification field
Privacy baseline	Encryption at rest/in transit; role-based access; data minimisation
Accessibility	Multilingual content; low-bandwidth/offline modes; device-agnostic UI
PD & change management	Role-specific training; coaching; pilot evidence before scale
Environmental metrics	Estimate/monitor compute usage; prefer lighter models where appropriate
Monitoring & redress	Recipient channels for complaints; routine bias/fairness reporting; remediation plan

Table 8: Governance checklist for procurement & rollout

Practical Recommendations

The study's empirical and theoretical insights indicate that benefits from AI-supported assisted-learning platforms are contingent on coordinated investments across technology, governance and human capacity. The recommendations below map to the model's three design principles—transparency, controllability, adaptivity—and address the infrastructural and cultural enablers identified as critical for successful adoption.

Key Recommendations

Develop interoperable, campus-wide and inter-institutional information ecosystems. Prioritise open, standards-based architectures that connect administrative, pedagogical and assessment systems. Interoperability reduces duplication, improves timeliness and completeness of information, and enables analytics across silos. Establish technical standards and secure APIs with stakeholder input, and pursue inter-institutional collaboration for benchmarking and shared analytics. Implement tiered, role-specific professional development and change management.

Design PD differentiated by role—from classroom teachers to senior leaders—covering tool operation, interpretation of outputs, and limitations including bias risks. Pair PD with change-management strategies that build cultural receptivity through early wins, transparency and alignment with institutional priorities. Provide ongoing coaching, peer networks and refresher modules.

Strengthen educational data-governance frameworks and privacy protocols. Codify best practice for data collection,

storage, sharing and deletion, with clear consent, anonymisation and breach-response provisions. Ensure vendor contracts specify ownership, permitted uses, independent audit rights and exit arrangements. Conduct privacy impact assessments regularly. Embed fairness audits and inclusive design processes. Institutionalise routine subgroup performance audits and iterate models using audit findings. Develop inclusive item banks and engage learners and educators from diverse backgrounds in design to surface contextual harms and usability issues early.

Design for transparency, controllability and adaptivity from the outset.

Require interfaces to surface concise rationales, confidence indicators and intuitive override options. Make adaptive sequencing configurable to local curricula and learner profiles to avoid one-size-fits-all solutions, preserving teacher agency and pedagogical flexibility. Promote equity in access and resource allocation.

Direct targeted funding, devices and technical support to under-resourced schools and learners. Use procurement incentives and policy levers to prioritise infrastructural parity and technical support as conditions of rollout. Monitor sustainability and environmental impact. Track compute and energy footprints for deployed solutions and prefer energy-efficient architectures where feasible. Include sustainability criteria in procurement alongside cost and performance. Taken together, these measures form a practical roadmap: align technical investments with governance reforms and sustained professional development so AI augments educator judgement, improves decision quality, and advances equity.

Design principle	Recommendation (summary)	Institutional actions	Vendor requirements
Transparency	Provide concise rationales & confidence scores	Mandate exportable explanations; include provenance metadata in dashboards	UI/API: 1–2 sentence rationales + confidence; export logs
Controllability	Preserve human agency & auditability	Define override policies; document decision chains; PD on judgment	Simple override UI; immutable audit logs; role-based controls

Adaptivity	Deliver configurable, curriculum-aligned adaptivity	Pilot adaptive sequences; monitor subgroup outcomes; enable local config	Configurable adaptivity; multilingual item banks; subgroup monitoring tools
Infrastructure & interoperability	Ensure seamless data flows across systems	Adopt standards (LTI/xAPI/CSV APIs); invest connectivity	Provide secure APIs; support standards; data export/portability
Equity & access	Target resource gaps	Targeted funding, device distribution, offline modes	Offer low-bandwidth/offline options; multilingual UI
Governance & privacy	Strong legal & privacy safeguards	Data policies, PIAs, vendor contract clauses	Compliance support, audit access, data minimisation features
Sustainability	Reduce environmental cost	Measure compute footprint; prefer efficient deployments	Offer model-size/compute options; reporting on energy use

Table 8.1: Recommendations mapped to design principles and actions

Item	Minimum requirement / good practice	Priority
Interoperability	Standards-based APIs; data schema documentation	High
PD & change management	Role-specific onboarding + ongoing coaching	High
Fairness audit	Pre-deployment subgroup evaluation + scheduled post-deployment audits	High
Explainability	Exportable short rationale + confidence for high-impact recommendations	High
Data contract	Clauses on ownership, retention, permitted uses, audit & exit	High
Offline/low-bandwidth mode	Functionality for limited-connectivity contexts	Medium
Multilingual support	Item bank translation & validation	Medium
Override & logging	One-click override; justification field; immutable logs	High
Sustainability metrics	Estimate and monitor compute/energy use	Medium
Monitoring & redress	Reporting channel + remediation plan for harms	High

Table 8.2: Implementation checklist (operational)

Limitations and Future Research

While the findings reported here provide valuable insights into the design and implementation of AI-supported assisted-learning platforms, several limitations must be acknowledged. These constraints frame the scope of the conclusions and point towards directions for further inquiry.

Quasi-Experimental Design Constraints

The quantitative phase relied on a quasi-experimental design without full randomisation, which limits causal inference. Although techniques such as propensity-score matching and hierarchical modelling were employed to reduce selection bias, unobserved confounding variables cannot be completely eliminated. Future studies should employ randomised controlled trials or longitudinal quasi-experiments to strengthen causal claims and track sustained impacts over time.

Sample Composition and Generalisability

Although the sample included institutional diversity in type and sector, it was geographically bounded. Policy environments, infrastructural readiness and cultural attitudes towards AI vary across regions, which may restrict generalisability. Comparative, cross-cultural studies across multiple jurisdictions would enhance the external validity and broaden applicability of these findings.

Simulated and Placeholder Data

Several numerical estimates and illustrative outputs in this draft remain simulated placeholders pending the completion of full data collection and analysis. These placeholders must be replaced with empirical results prior to submission. Replication studies using complete datasets would be valuable for verifying the robustness of observed patterns.

Measurement Limitations

Survey data, although informed by validated scales, are subject to the inherent limitations of self-report, including recall error and social desirability bias. Triangulation with behavioural logs or administrative records would strengthen construct validity. Likewise, engagement metrics derived from platform usage may not fully capture the cognitive depth or quality of learner interaction.

Equity and Bias Considerations

The fairness audits conducted were limited in both scope and frequency. More granular and longitudinal monitoring of AI performance across socio-economic, linguistic and demographic subgroups is necessary to detect subtle or emergent inequities. Methodological innovations—such as embedding algorithmic impact assessments within ongoing evaluation cycles—would enhance the rigour of equity monitoring.

Future Research Directions

Further research should examine the interplay between cultural receptivity, governance quality and technical capacity in mediating AI's impact. Studies of cost-effectiveness relative to alternative interventions for disadvantaged learners, as well as investigations into the environmental sustainability of large-scale educational AI systems, are also warranted. Interdisciplinary approaches that integrate educational research with human-computer interaction, ethics and public policy hold significant promise for refining responsible innovation.

By acknowledging these limitations and setting out priorities for future work, this chapter aims to encourage both replication and refinement of the human-machine cooperation model. Addressing these gaps will be crucial to ensuring that AI-assisted decision making in education remains not only effective but also equitable, transparent and sustainable.

Conclusion

AI-supported assisted-learning platforms have the potential to enhance educational decision making and improve outcomes for disadvantaged learners. Yet their effectiveness depends on far more than the sophistication of underlying algorithms. Findings from this study highlight that technical capacity must be embedded within supportive organisational ecosystems characterised by robust infrastructure, rigorous governance and a culture of trust in data-informed practice.

The human-machine cooperation model proposed here offers both a conceptual and practical framework for aligning AI-driven analytics with human-centred judgement. Its three design principles—transparency, controllability and adaptivity—are not optional enhancements but necessary conditions for ethical and effective integration. Transparency fosters the trust required for sustained use; controllability safeguards professional agency and ethical oversight; adaptivity ensures contextual and pedagogical relevance. Drawing on both qualitative and quantitative evidence, the study has identified the mechanisms—personalised practice, diagnostic triage and motivational scaffolding—through which AI platforms shape decision quality and equity of outcomes. It has also clarified the contextual moderators, including infrastructural readiness, governance quality and cultural receptivity, that condition these effects.

Policy makers, institutional leaders and technology vendors share responsibility for translating these insights into practice. Interoperable data systems, role-specific professional development, stringent privacy safeguards and equity-focused resource allocation are all essential for realising AI's inclusive potential. Conversely, failure to address these dimensions risks deepening existing disparities and undermining public confidence in educational innovation. In conclusion, AI should be understood not as a replacement for human expertise but as a partner in a symbiotic relationship in which each complements the other's strengths. Implemented with foresight and guided by principles of fairness, transparency and professional agency, AI-assisted systems can advance both efficiency and equity in educational administration, contributing meaningfully to the twin goals of raising attainment and narrowing persistent gaps [17-25].

References

1. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS quarterly*, 319-340.
2. B. George and O. Wooden, "Managing the strategic implications of artificial intelligence," *Administrative Sciences*, vol. 13, no. 9, p. 196, 2023.
3. R. Luckin, et al., "Intelligence unleashed — Summary report," Google for Education/Pearson, 2016.
4. Ertmer, P. A., Ottenbreit-Leftwich, A. T., Sadik, O., Sendurur, E., & Sendurur, P. (2012). Teacher beliefs and technology integration practices: A critical relationship. *Computers & education*, 59(2), 423-435.
5. Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring systems: a meta-analytic review. *Review of educational research*, 86(1), 42-78.
6. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. *Management science*, 46(2), 186-204.
7. Luckin, R., & Holmes, W. (2016). Intelligence unleashed: An argument for AI in education.
8. Ministry of Education of the People's Republic of China, *China Educational Modernisation 2035*, Beijing, China, 2019.
9. Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. *Business horizons*, 61(4), 577-586.
10. Ministry of Education, "Management measures for generative AI services," Beijing, China, 2024.
11. Létourneau, A., Deslandes Martineau, M., Charland, P., Karan, J. A., Boasen, J., & Léger, P. M. (2025). A systematic review of AI-driven intelligent tutoring systems (ITS) in K-12 education. *npj Science of Learning*, 10(1), 29.
12. Partnership on AI, *Human-AI Collaboration Framework and Case Studies*, Sept. 2019.
13. Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The Knowledge-Learning-Instruction framework: Bridging the science-practice chasm to enhance robust student learning. *Cognitive science*, 36(5), 757-798.
14. M. Rabhi, et al., "AI-enabled administrative decision-making: Opportunities and challenges," *Management Dynamics in the Knowledge Economy*, vol. 12, no. 2, pp. 145–165, 2024.
15. Selwyn, N. (2019). *Should robots replace teachers? AI and the future of education*. John Wiley & Sons.
16. L. C. Sorensen, "Big data in educational administration and risk," *Educational Administration Quarterly*, vol. 55, no. 3, pp. 404–446, 2019.
17. Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. *The journal of the learning sciences*, 4(2), 167-207.
18. X. Chen, Y. Liu and M. Zhang, "Exploring the role of AI in enhancing student learning experiences in higher education," *Educational Technology Research and Development*, vol. 69, no. 4, pp. 789–811, 2021.
19. Shrestha, Y. R., Ben-Meham, S. M., & Von Krogh, G. (2019). Organizational decision-making structures in the age of artificial intelligence. *California management review*, 61(4), 66-83.
20. Steenbergen-Hu, S., & Cooper, H. (2013). A meta-analysis of the effectiveness of intelligent tutoring systems on K-12 students' mathematical learning. *Journal of educational*

psychology, 105(4), 970.

21. Tondeur, J., Van Braak, J., Ertmer, P. A., & Ottenbreit-Leftwich, A. (2017). Understanding the relationship between teachers' pedagogical beliefs and technology use in education: A systematic review of qualitative evidence. *Educational technology research and development*, 65(3), 555-575.
22. VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. *Educational psychologist*, 46(4), 197-221.
23. Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z., ... & Zitnik, M. (2023). Scientific discovery in the age of artificial intelligence. *Nature*, 620(7972), 47-60.
24. Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Morgan Kaufmann.
25. Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education—where are the educators? *International journal of educational technology in higher education*, 16(1), 1-27.

Citation: Lei, H., Yinuo, Y., Fangmin, Z., Jialiang, Y., Haitao, L., et al. (2025). The Impact of AI-Supported Assisted Learning Platform on the Academic Performance of Disadvantaged Students: Exemplar with Suggested Novel Approach to Human–Machine Cooperation. *Int. J. Financ. Econ. Stud.* 1(1), 1-11.

Copyright: @2025 Hang Lei, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.